
 

International Journal of Sensors and Sensor Networks 
2022; 10(1): 1-6 

http://www.sciencepublishinggroup.com/j/ijssn 

doi: 10.11648/j.ijssn.20221001.11 

ISSN: 2329-1796 (Print); ISSN: 2329-1788 (Online)  

 

Multi-frame Point Cloud Fusion Method Based on Depth 
Camera Sensors 

Yang Zhongfan
1, 2

, Wang Xiaogang
1, 2, *

, Hou Jing
1, 2

 

1School of Automation & Information Engineering, Sichuan University of Science & Engineering, Yibin, China 
2Artificial Intelligence Key Laboratory of Sichuan Province, Sichuan University of Science & Engineering, Yibin, China 

Email address: 
 

*Corresponding author 

To cite this article: 
Yang Zhongfan, Wang Xiaogang, Hou Jing. Multi-frame Point Cloud Fusion Method Based on Depth Camera Sensors. International Journal 

of Sensors and Sensor Networks. Vol. 10, No. 1, 2022, pp. 1-6. doi: 10.11648/j.ijssn.20221001.11 

Received: December 22, 2021; Accepted: January 7, 2022; Published: January 15, 2022 

 

Abstract: As a consumer-grade portable depth image data acquisition device, the depth camera is widely used in the field of 

computer vision, such as slam, autonomous driving, environment perception, etc. However, due to the limitation of the device 

angle, the complete 3D point cloud of the target cannot be obtained at one time. Point cloud registration can complete the overlap 

of two frames of point clouds. Therefore, a multi-frame point cloud fusion method based on key points and registration is 

proposed. First, the point cloud is calculated on the depth map obtained by the depth camera, and then an improved point cloud 

filtering algorithm based on the normal vector inner cumulus is used to remove the background and noise points. Secondly, four 

key point detection algorithms and three registration algorithms with different principles are applied to the point cloud data 

obtained by the depth camera, and the applicable scenarios and limitations of each algorithm are analyzed. Finally, a multi-frame 

point cloud fusion algorithm is used to splice the point clouds, and the redundant points after splicing are filtered out to obtain a 

complete point cloud of the object. The experimental verification of the target object using the depth camera shows that the 

proposed method can obtain the complete point cloud data of the target object robustly. 
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1. Introduction 

One of the mainstream applications of 3D vision is 3D 

reconstruction. A variety of 3D reconstruction technologies 

have been developed based on different principles, such as 

binocular stereo vision [1], structured light [2, 3], Lidar [4, 5], 

TOF depth camera [6], etc. The reconstruction technology 

used is different according to the difference of reconstruction 

scenes, but the common purpose is to obtain depth information. 

In the absence of marker positioning, it is difficult to solve the 

external parameter matrix between the camera coordinate 

system and the world coordinate system. There are direct 

solutions, such as three-dimensional coordinate measuring 

machines, three-dimensional target direct calibration methods, 

and two-dimensional plane target calibration methods, etc. 

The coordinate measuring machine is expensive and 

complicated to operate. The three-dimensional target direct 

method and the two-dimensional plane target calibration 

method need to solve overdetermined equations, iterative 

optimization, and a large amount of calculation. There are also 

restrictions on a certain dimensional coordinate, which can be 

solved by restriction conditions, but it needs to have 

restrictions on the light plane or the position of the camera, 

and it is easy to be disturbed. 

At present, the mature portable 3D vision devices on the 

market mainly include 3D laser scanners, depth cameras, and 

lidars, each of which has its advantages and disadvantages. 

The 3D laser scanner has the highest accuracy, but because it 

is based on optical principles, the design of hardware chips 

and algorithms is more complicated, and the cost of a single 

unit is too expensive for ordinary users to bear. The depth 

camera was originally developed by Microsoft. Its products 

are Kinect v1 and kinect v2, which are mainly used in 3D 

somatosensory games, and their accuracy is lower than that of 

laser scanners. Lidar is mainly used in the field of autonomous 

driving, and its imaging range can reach tens of meters, so the 

application scene is outdoors and the accuracy is lower. 
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With the rapid development of sensors in recent years, 

many researchers have been able to solve problems with the 

help of three-dimensional vision. Ji Baibing [7] designed a 

monocular three-dimensional reconstruction system that can 

provide pose information for robot grasp tasks. Sun Shuo [8] 

designed a three-dimensional facial reconstruction system for 

virtual facial plastic surgery to provide data for medical plastic 

surgery. Huang Zhiming [9] uses a depth camera and an 

ultrasonic sensor to detect transparent obstacles and provides 

visual assistance to the visually impaired. Dai Wen [10] used a 

depth camera to perform three-dimensional reconstruction of 

complex workpieces and applied the three-dimensional 

reconstruction technology to the field of industrial spraying. 

It can be seen that the 3D reconstruction method of the depth 

camera has gradually been applied in various industries and has 

a large application scenario. In this paper, the KinectV2 depth 

camera method is used to study the point cloud algorithm, and 

the reconstruction is aimed at a single target. The reconstructed 

object is a workpiece or other object with a radius of half a 

meter. The purpose is to reconstruct the complete point cloud of 

the target object to verify the improved filtering algorithm, the 

comparison of multiple registration algorithms, and the 

multi-frame fusion registration method. 

2. Methods and Results 

2.1. Point Cloud Data Acquisition 

When using Kinect to acquire depth images, due to the 

limitations of the device itself, only one depth image of the 

object to be measured can be captured at a time. To get the 

complete information of the object, we need to shoot from 

multiple angles. Generally, we can shoot by keeping the object 

still and moving the camera or keeping the camera still and 

rotating the object for shooting. 

The SDK officially provided by Microsoft cannot directly 

output raw infrared data. Instead, after the infrared camera 

obtains the data, it will perform calculation processing in its 

built-in chip to obtain the depth data of the object. 

The specific steps to obtain the depth image are: 

(1) Check whether the Kinect equipment is operating normally; 

(2) Initialize the device and set the depth data stream of the 

device to a usable state; 

(3) Call the internal acquisition function, extract the depth 

data and store it; 

(4) Release the data frame and Kinect device. 

 

Figure 1. Kinect v2 camera. 

The world coordinate system in Figure 1 takes the 

KinectV2 device as the origin of the coordinates, while in the 

coordinate system of the depth image, the origin of the depth 

image is used as the origin of the coordinates. Therefore, it is 

necessary to calculate the X and Y coordinates in the 

real-world coordinate system based on the measured depth z 

coordinate information. 

The camera model can be regarded as an ideal pinhole 

imaging model. The depth image resolution of KinectV2 is 

512x424. Based on the triangle similarity principle, the XY 

coordinates can be calculated as: 

� � �� � 256	 
 � 
 �

               (1) 

� � �� � 212	 
 � 
 �

               (2) 

In the formula, u, v, Z, and f are known. 

2.2. Point Cloud Filtering 

After the depth image in the previous section is converted 

into a point cloud, due to factors such as target material, 

ambient light, and calculation errors, a lot of noise will be 

generated in addition to the background, as shown in Figure 2. 

 

Figure 2. Initial data with background noise. 

Generally, the point cloud data obtained by the point cloud 

acquisition device is very large, which not only contains the 

environmental information around the target but also has a 

large number of outliers. If only the target is required to be 

processed, it is necessary to filter the original point cloud to 

remove redundant point clouds. This paper uses conditional 

filtering and an improved radius removal algorithm to remove 

environmental and noisy point clouds in turn. 

The improved filtering algorithm process is: 

1. Determine the lower limit of the Z-axis of conditional 

filtering according to the distance between the origin of 

the camera coordinate system of the adjusted depth 

camera and the target object; 

2. Determine the upper limit of the Z-axis, X-axis interval, 

and Y-axis interval of the filter based on the size of the 

target object itself; 

3. Calculate the normal vector for each point of the point 

cloud initially processed in steps 1-2; 
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4. Calculate the inner product α of the normal vector of 

each point and the normal vector of the adjacent point. If 

α>0 and α<ε (ε>0), then the point is reserved; if α<0 or 

α>ε (ε>0), then Discard this point. 

For the background environment, conditional filtering can 

be used to remove. The idea of conditional filtering is 

relatively simple. According to the approximate position of 

the target in the point cloud, other points can be removed by 

the threshold limit. The processed result is shown in Figure 3: 

 

Figure 3. Remove background noise. 

As can be seen from the above figure, there are still 

irregular and disorderly patchy point clouds after preliminary 

filtering. The difference between this noise and an object is 

that the object’s point cloud is a relatively smooth surface, 

and the noise is an irregular noise. This noise can be removed 

by calculating the plane normal vector of all points in a 

certain radius area, and then setting the threshold of the 

normal vector inner product. The rule is: if the normal vector 

inner product between adjacent points is positive and less 

than a certain threshold, the point is considered to be the 

target object (inner point); if the normal vector inner product 

between adjacent points is negative or greater than a certain 

threshold Threshold, the point is considered a noise point 

(outside point). Applying the filter designed by this rule, the 

final target point cloud is shown in Figure 4. 

 

Figure 4. Further denoising. 

Applying the above filtering algorithm to the point cloud 

with 12 frame intervals of 30°, the obtained point cloud is 

shown in Figure 5. 

 

Figure 5. Frame point cloud from various angles. 

2.3. Keypoint Extraction 

Key points are also called feature points. The points with 

special information calculated by specific rules are further 

calculated with the surroundings and called descriptors. The 

registration algorithm based on feature points performs 

registration on these matched descriptors. This article has 

studied SIFT3D [11], Harris3D [12], NARF [13], ISS3D [14], 

the main key point extraction algorithms. I will not repeat the 

principle here but focus on the analysis of what they extract. 

The characteristics and application scenarios of the key points. 

Among several key points, SIFT3D is similar to SIFT2D, 

and the extracted key point characteristics are 

scale-rotation-invariant, but they have more dimensions than 

two-dimensional images and are computationally expensive. 

Harris3D is a corner detection algorithm, which is also 

developed from the Harris2D algorithm, and mainly extracts 

corners. Although NARF is also a key point detection 

algorithm, it mainly detects special points on the edge, that is, 

key points are mainly distributed on the edge, which is 

suitable for scenes that identify objects from the background. 

ISS3D establishes a local coordinate system and performs 

feature value analysis, and the extracted key points have local 

features. 

 

（From left to right, SIFT3D, Harris3D, NARF, ISS3D） 

Figure 6. Four key points extraction and comparison. 

Figures 2-6 shows the results of four key point algorithms 

detecting point clouds in two adjacent frames. According to 

the analysis of literature [15], the key points obtained by the 

ISS algorithm can represent local information, the number of 

matching points is the largest, and it is not interfered by noise. 

Therefore, this paper chooses the ISS algorithm to extract the 

key points. 

2.4. Point Cloud Registration 

To stitch the point clouds between the various perspectives 

together, it is necessary to perform pairwise registration 

between the point clouds of two adjacent frames. In this paper, 



4 Yang Zhongfan et al.:  Multi-frame Point Cloud Fusion Method Based on Depth Camera Sensors  

 

the registration algorithm based on three different principles 

of feature matching, random search, and statistical model is 

tested on actual data, and the corresponding representative 

registration algorithms are selected respectively: SAC-IA [16], 

ISS-4PCS, and NDT [17] are compared. 

The algorithm steps of SAC-IA are as follows: 

1. Calculate the FPFH feature descriptors of the source 

point cloud and target point cloud separately; 

2. Match the points in the two-point clouds based on the 

FPFH feature descriptor; 

3. Randomly select n (n≥3) pairs of matching points; 

4. Solve the rotation vector and translation vector in this 

matching case by SVD; 

5. Calculate the root mean square error; 

6. Repeat steps 3-5 until the conditions are met, and take 

the rotation vector and translation vector corresponding 

to the minimum root mean square error as the final result. 

The algorithm steps of ISS-4PCS are as follows: 

1. Extract the ISS key points of the source point cloud P and 

the target point cloud Q respectively, and express them as ��,��; 
2. Randomly select 3 points from �� and �� respectively; 

3. Then according to the source point cloud P and the overlap 

rate f of the target point cloud Q, select the fourth coplanar 

point far enough from the other 3 points (also selected 

from ��, ��) to form a coplanar four-point base B; 

4. Then according to the affine invariant ratio, extract all 

the 4-point sets U � ��, ��, ��,⋯ that may be consistent 

with B within a certain distance δ from the point set Q. 

For any��, calculated by the relationship between B and �� rigid transformation T; 

5. Test the different bases of the L group according to the 

overlap ratio. When a constant number of random 

sampling points in P have enough corresponding points 

in Q, the best rigid transformation matrix �����  for 

rough registration is obtained. 

The NDT algorithm steps are as follows: 

1. Divide the space occupied by the source point cloud into 

a specified size grid or voxel (cell); 

2. Calculate the multi-dimensional normal distribution 

parameters of each grid cell: 

Calculate the center of the included points in the grid (the 

average of each axis) and the covariance matrix (similar to the 

ISS keypoints): 

 � �
!∑ #��                (3) 

Σ � �
!∑ �#� �  	�#� �  	%�          (4) 

3. Transform the target point cloud to the source point 

cloud coordinate system: 

T: (#
�

)�*�+ � , -#)*. / 0           (5) 

4. Calculate the probability of each conversion point falling 

in the corresponding grid according to the normal 

distribution parameters: 

p�x	~exp	�� �678	9:;<�678	
� 	        (6) 

5. NDT registration score: Calculate the sum of the 

probability that the corresponding point falls in the 

corresponding grid: 

score�p	 � ∑ exp	�� A6BC78BD9:B;<�6BC78B	� 	�       (7) 

6. Optimize the objective function according to the 

Newton optimization algorithm, that is, find the 

transformation parameters to maximize the value of 

score; 

7. Jump to step 3 and continue execution until the 

convergence condition is reached. 

Figure 7 shows the comparison of the registration results of 

the three algorithms for 0-30° point cloud. Green is the source 

point cloud, red is the target point cloud, and blue is the 

transformed point cloud. The higher the degree of coincidence 

between the blue point cloud and the red point cloud, the better 

the effect of the registration algorithm. From the point of view 

of the details of the point cloud, the ISS-4PCS has the best 

registration result. Table 1 shows the transformation matrix 

and the configuration calculated by the three algorithms. The 

root means square error of the corresponding point after 

accurate, the registration time. From Table 1 again, the root 

means square error of ISS-4PCS is the smallest and the 

registration time is the shortest. 

 

（From left to right are SAC-IA, ISS-4PCS, NDT） 

Figure 7. Comparison of the effects of three-point cloud registration 

algorithms. 

Table 1. Root mean square error and registration time. 

 RMSE (m) Registration time (s) 

SAC-IA 0.00421947 0.905539 

ISS-4PCS 0.00387012 0.60386 

NDT 0.00679893 14.8562 

2.5. Point Cloud Fusion 

In the experiment in the previous section, we selected the 

ISS-4PCS algorithm with the best registration effect for 

pairwise registration and obtained the transformation matrix 

of the point cloud of two adjacent frames. Then the ICP 

algorithm is used for fine registration. The following figure 

shows the result of the target point cloud registration. Then the 

point clouds of 11 frames of other perspectives are 

transformed to the same coordinate system through the 

transformation matrix. The result is shown in Figure 8. 
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Figure 8. Target point cloud fusion result. 

It can be seen that after multi-frame point cloud fusion, 

there are still ghosting phenomena and extra points on the 

edge. It can be further optimized to remove redundant points. 

First, the nearest point approximate center voxel filtering 

algorithm is used to remove ghosts, and then the radius 

filtering algorithm is used to remove isolated points. The 

result after processing is shown in Figure 9. 

 

Figure 9. Final result. 

3. Conclusion 

The 3D point cloud reconstruction of the target object is one 

of the key technologies of 3D vision. In this paper, a depth 

camera is used to complete the 3D point cloud reconstruction 

of the target object. Focusing on the analysis of common 

algorithms for point cloud registration, the ISS-4PCS 

algorithm with the best comprehensive performance is 

selected, and various filtering algorithms are used to complete 

the fusion of multi-frame point clouds and achieve better point 

cloud results. The reconstruction error is at the millimeter 

level. Although the accuracy is lower than that of a 3D scanner, 

the reconstruction efficiency is high, suitable for rapid 

reconstruction, and low cost. It can provide data support for 

related point cloud algorithm research. 
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