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Abstract: The evacuation planning problem can be viewed as different variants of dynamic flow maximization and time 

minimization problems. An optimal solution to the latter problem sends a given amount of flow from disaster zones to safe 

zones in minimum time. We solve this problem on an embedded integrated network of a prioritized primary and a bus-routed 

secondary sub-networks. For a lexicographically maximum (lex-max) dynamic flow problem, we are given a time horizon and 

a prioritized network, where we need a feasible dynamic flow that lexicographically maximizes the flow amount leaving each 

terminal respecting the priority. Here, we use the quickest transshipment partial arc reversal strategy to collect the evacuees in 

minimum time from the disaster zones to the pickup locations of the primary sub-network. By treating such pickup locations as 

sources, the available set of transit-buses is assigned in the secondary sub-network to shift the evacuees finally to the sinks on 

the first-come-first-serve basis. This novel approach proposed here is better suited for the simultaneous flow of evacuees with 

minimum waiting delay at such pickup locations in the integrated evacuation network topology. The lane reversal strategy 

significantly reduces the evacuation time, whereas reversing them only partially has an additional benefit that the unused road 

capacities can be used for supplying emergency logistics and allocating facilities as well. 
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1. Introduction 

Problems on dynamic networks were firstly introduced by 

Ford and Fulkerson [1, 2]. The minimum clearance time 

evacuation planning problem considered here has been 

modeled in dynamic networks in which each arc has a 

nonnegative flow capacity and integer transit time. This is 

one of the fundamental problems in evacuation planning to 

find the minimum time limit such that all supplies can be sent 

to the sinks (safe places) from the sources (disastrous zones). 

There has been a fair amount of work regarding different 

aspects of the evacuation planning problems, including the 

quickest one for minimum clearance time, as referred by [3-

6]. These problems are usually handled with a different 

perspective, namely, the transit-based, car-based, and 

pedestrian movements depending on evacuation scenarios. 

The transit-based planning problems are to minimize the 

duration of evacuation by routing and scheduling a fleet of 

vehicles, say buses. The NP-hard multi-depot, multi-trip bus-

based evacuation planning problem (BEPP) was introduced 

and analyzed prominently in [7] which is closer to the split 

delivery multi-depot vehicle routing problem with inter-depot 

routes. However, if there is only one bus-depot, assuming 

that the bus pick ups the same number of people that equals 

its capacity, the author in [8] has also proposed the BEPP for 

the evacuation of a region from a set of collection points to a 

set of capacitated sinks. Based on such BEPP, Pyakurel et al. 

[9] explored a wide horizon to the research related to the 

transit-dependent evacuation planning problem. In their 

study, the excess exterior points of the disaster region were 

taken as the pickup locations and the available open spaces as 

the sinks. Evacuees were supposed to gather themselves from 

their residents to the nearby pickup locations. Homogeneous 

buses with the uniform capacity were used for the evacuees' 

pickup. Their computational analysis noticed that the domain 

of optimal solutions remains on the larger number of buses 

with higher capacity and speed irrespective of the number of 



208 Iswar Mani Adhikari and Tanka Nath Dhamala:  Minimum Clearance Time on the Prioritized Integrated Evacuation Network  

 

sources and sinks chosen. 

A solution to maximum flow problem sends the maximal 

amount of flow from the sources to the sinks for the fixed 

integer time horizon T. Lexicographically maximum (lex-

max) flow problem with many sources and many sinks was 

introduced and many efficient algorithms were presented 

from different aspects in [10-13]. In such a problem, the 

terminals (sources and/or sinks) are ordered with certain 

priority for a lex-max flow respecting the priority. Such a 

lex-max flow is not necessarily a maximum flow and vice 

versa, however, they are equivalent for two-terminal 

networks [2]. If a flow is both source-optimal and sink-

optimal, then it becomes the lexicographically optimal flow 

in the priority network [14]. 

The lex-max dynamic contraflow problem was 

investigated in [15] where reversals of arcs are allowed. The 

partial contraflow with path reversals leads to a significant 

improvement in increasing the flow values, decreasing the 

evacuation time, and utilization of the unused capacities of 

paths for humanitarian logistics and vehicle movements, 

[16]. Authors in [17] have introduced the partial lane reversal 

strategy and presented efficient dynamic flow algorithms for 

quickest and maximum flow evacuation planning problems. 

In the quickest transshipment problem, a given number of 

evacuees has to be shifted in minimum time. Such problems 

have been studied by the help of the lex-max dynamic flow 

problem applying the minimum cost flow computations as a 

tool [18]. An algorithm to find the universally quickest 

transshipment has been presented [19]. They also have used 

the minimum cost flow computations. 

In this work, evacuees are collected from the disaster zone 

to the pickup locations of the primary sub-network in 

minimum time as the quickest transshipment by using the 

lex-max flow approach. Considering such pickup locations as 

the sources, the available set of transit-buses are also 

assigned in the network to evacuate the evacuees safely to the 

sinks on the first-come-first-serve basis. This novel approach 

proposed here is better suited for the simultaneous flow of 

evacuees with minimum waiting delay at such pickup 

locations for the evacuation planning problem in the 

integrated network. 

In Section 2, we explain an integrated network topology. 

The arrival of evacuees at the primary sub-network in 

Section 3. The assignment of vehicles in the secondary sub-

network including its embedding to the primary sub-network 

is described in Section 4. An integrated solution approach for 

the proposed problem is presented in Section 5. Section 6 

concludes the paper. 

2. An Integrated Network Topology 

Consider two separate dynamic networks N� and N�  as a 

primary and a secondary sub-network, respectively. These 

two are embedded as a unit to form an integrated evacuation 

network as � � N� � N�. Among them, �� is a directed two-

way network and ��  is the mixed network having directed 

one-way arcs and undirected edges. 

2.1. The Primary Sub-network 

Let �� � ��, 
, �, �
, �
, ��  be a primary sub-network, 

� � ���, ��, … , ��� , 
 � ���, ��, … , ��� and 

� � ���, ��, … , ���  denote the sets of sources, auxiliary 

nodes, and pickup locations, respectively. The set of arcs 

joining any two nodes in ��  are denoted by �  where the 

capacity and transit time are denoted by �
  and �
 , 

respectively. The capacity �
: � � ���  restricts the amount 

of flow on the arc and the transit time �
: � � ��� represents 

the time required for the flow to transverse through the 

respective arc. During evacuee arrival at the pickup location 

� from �, the set � ��  ���� is the set of sinks. 

2.2. The Secondary Sub-network 

Let �� � ��, �,  , �! , "�  be a secondary sub-network, 

where � and " � �#�, #�, … , #�� are the bus depot and sink, 

respectively. A set of transit-buses $ � �%�, %�, … , %�� with 

uniform capacity are located initially at the bus depot � and 

are assigned as required during the evacuation procedure. 

Buses do not return to �  even after the completion of the 

evacuation process as it is risky to return to it under such 

threats. So, it does not play significant roles further in the 

system. The set   consists of the one-way arcs & � ��, �� 

with � ' �  and the undirected edges & � (�, #) , with � * � 

and # * ". Transit times of the respective arcs and edges are 

denoted by �! *  �+ as �,� and ��-, respectively. 

2.3. An Embedding of the Integrated Network 

In an embedding, � � �� � ��, capacity, transit times, and 

other related attributes for �  are carried over from their 

respective sub-networks. The node �  works as the sinks 

concerning ��  but as the supply for �� . Transit-buses are 

assigned in �� from �, which are sufficiently closer to it, on 

the first-come-first-serve basis, i.e., the evacuees collected 

earlier will be assigned earlier to the appropriate sink and 

will be continued till the supply is available at Y respecting 

the capacity of the sinks ". 

 

Figure 1. (i) A primary sub-network, and (ii) a secondary sub-network. 
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3. Arrival of Evacuees 

The nature of the evacuees and the intensity of the 

disasters may vary at different sources. Mostly, the evacuees 

collected at pickup locations have to wait long for being 

assigned to transit-buses in the network. On the other hand, 

the nature of the pickup locations may also differ from each 

other depending upon their locations, availability, etc. So, the 

network is better to be prioritized. For such formulations, the 

lexicographic approach is better suited as different priorities 

can be assigned to various attributes. Such an approach can 

be applied to achieve the quickest transshipment with several 

sources and sinks, provided with the given supply and 

demand [18]. 

An � − �  flow of evacuees over time is a non-negative 

function / on � × 1 for given time 1 � �0,1, … , 1} satisfying 

the flow conservation and capacity constraints (1-3). The 

inequality flow conservation constraints allow it to wait for 

flow at intermediate nodes, however, the equality flow 

conservation constraints force that flows entering an 

intermediate node must leave it. 

∑  ∑ /5
6789
: ;<

<=  �>, ? − �
� −  ∑  ∑  /5
67�
: ;<

@AB  �>, ?�  =

0, ∀ D ∈ 
\�� ∪ ��                         (1) 

∑  ∑ /F
6789
: ;<

<=  �>, ? − �
� −  ∑  ∑  /F
67�
: ;<

@AB  �>, ?�  ≥

0, ∀ D ∈ 
\�� ∪ ��, H ∈ 1                       (2) 

0 ≤ f �a, θ� ≤ �
 ∀ > ∈ �, H ∈ 1                (3) 

The sets of outgoing and incoming arcs for the node D ' 
 

are denoted by, ��
MNO = {> = �D, P� ' �}  and ��

�� = {> =
�P, D� ' �} , respectively. Not stated otherwise, for all � ' � 

and � ' �, we assume that ��
MNO = ��

�� = ɸ in the case without 

arc reversals. However, for the source node �  and sink 

node �, we get the flow value be υR �s� > 0 and υR �y� < 0, 

respectively, where ∑  υR �i� = 0� : X . 

Problem 1. Given an evacuation sub-network �� =
��, 
, �, �
, �
, �� with supplies at �, demands at � auxiliary 

nodes 
, arc capacity �
, and arc transit time �
  for > ' �. 

The quickest partial arc reversal transshipment problem is to 

find the quickest arrival of evacuees at �  with partial arc 

reversals capability. 

Let the reversals of an arc > = �D, P� be >′ = �P, D�. Then 

the transformed network of �� consists of the modified arc 

capacities and constant transit times as, 

�
Z =  �
 + �
\  and �
Z 7�
 if > ∈ � and is �
] for > ∉ �. (4) 

Here, an edge >Z ∈ �_  in transformed network ��ZZZ  if 

> ∨ >] ∈ �� . Concerning the auxiliary reconfiguration, it is 

allowed to redirect the arc in any direction with the modified 

increased capacity but with the same transit time in either 

direction. The remaining graph structure and data are 

unaltered. In the transformed network ��ZZZ, we have solved the 

lex-max dynamic flow problem on each arc as in [18] and 

saved all unused arc capacity as in [17]. 

Consider the set of sources and sinks be prioritized as 
{��, ��, … , ��} and {y�, y�, … , ya}, respectively. Let �∗ be the 

super source connected to such ��  with arcs having the 

infinite capacity and zero transit time. Let the sinks in �� be 

prioritized with the highest priority to the nearest by 

determining their shortest distances concerning �∗. The lex-

max flow within the specified time horizon T entering the 

sinks � in �� in that order can be computed in polynomial-

time, as in Algorithm 1, based on [18]. 

Algorithm 1. Lex-max dynamic flow of evacuees in ��. 

Input: A dynamic sub-network �� = ��, 
, �, �
 , �
, �� . 

Let 
 = 
 ∪ {�∗}  and �c+� = 
 ∪ {��∗, ���}: �� ∈ � , where 

�
��∗, ��� = ∞  and �
��∗, ��� = 0  for {�∗}  be the super 

source. Let ��
c+�  denotes the resulting network with 

e�
c+� = 0 be the zero flow and the set of chains be Γc+� =

g. 

1. For D = h, … , 1, set the arc be �� = ��+�, 

a. If ��  is sink, add the arc ���∗  with �
��∗, ��� = ∞  and 

�
��∗, ��� = −�1 + 1� . Then get /� =  minimum cost 

circulation in the resulting network using �
 as the arc cost. 

b. If �� is source, delete the arc ���∗ from �� and get /� = 

minimum cost maximum �∗�� – flow in the resulting network 

using �
 as the arc cost. 

2. Update the dynamic flow e� = e�+� + /�. 

3. Let Δ� = standard chain decomposition of /� , then the 

chain decomposable set becomes Γ� = Γ�+� + Γ�. 

4. Finally, return Γ = Γ�. 

As a mutatis mutandis to the results in [18], we are here 

with two more results. 

Theorem 1. Algorithm 1 constructed for the lex-max 

dynamic flow in �� gives the feasible solution for the lex-max 

number of evacuees at �. 

Theorem 2. For any lex-max dynamic flow problem, a lex-

max dynamic flow can be computed via j minimum cost flow 

(MCF) computations in k�j�lmn��o, p�� , where 

kq j�lmn��o, p�r = k�o ste p �o + p�� [20]. 

Hoppe and Tardos in [18] studied the lex-max flow 

problem in dynamic networks by applying the MCF 

computations and have shown the quickest transshipment 

problem is equivalent to it. Different algorithms to solve such 

quickest transshipment have been presented based on the 

chain-decomposable flows and the minimization of 

submodular functions but are with high-order time 

complexity, though are polynomial-time solvable. Such chain 

decomposable flows help to generalize the stationary 

dynamic flows and the temporary repeated flows. The 

temporally repeated flows were referred to as the standard 

chain-decomposable flows. Such chain flows in a 

nonstandard chain decomposition may use a backwards arc 

with negative transit time. Based on this landmark paper 

[18], authors in [21] have also presented the quickest 

transshipment algorithm to determine the quickest 

transshipment as a convex combination of simple lex-max 

dynamic flows. Now, we are presenting the quickest partial 

arc reversal transshipment algorithm to get the quickest 

arrival of evacuees at �  in ��  corresponding to the arc 

reversal capability. 

Algorithm 2. Quickest partial arc reversal transshipment 

algorithm. 
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Input: A dynamic sub-network �� = ��, 
, �, �
 , �
, �� , 

with the supply and demand. 

1. Construct a transformed dynamic sub-network ��ZZZ as in 

Equation (4). 

2. Solve the quickest transshipment problem [18] in the 

transformed network of Step 1. 

3. For each H ∈ T  and reverse >] ∈ �  up to capacity 

 v
 − �
  if and only if v
 > �
 , �
  replaced by 0 

whenever > ∉ �, in ��, where v
 denotes the static � −
 y flow value in each > ∈ � for such sub-network. 

4. For each H ∈ T  and > ∈ � , if >  is reversed, j
 =
�
Z – v
]  and j
] = 0 . If neither >  nor >]  is reversed, 

j
 = �
– v
 where j
 is saved capacity of >, [17]. 

5. Output: The quickest arrival of evacuees at � in �� with 

partial arc reversal capability. 

Theorem 3. Algorithm 2 constructed for the quickest 

partial arc reversal transshipment gives the optimal solution 

for the quickest arrival of evacuees at � and saves the unused 

capacity. 

Proof. The construction of a transformed dynamic network 

��ZZZ for the given network �� in Step 1 is feasible. From the 

quickest transshipment problem [18], Step 2 is feasible. 

Moreover, the flow is either on arc > or >′ but not in both 

directions simultaneously. And such flow is not greater than 

the modified capacities of each arc in the transformed 

network. So, Step 3 is also feasible. Step 4 is also feasible 

and helps to compute the saved capacity by arc reversal 

capability. Hence, Algorithm 2 is feasible. 

Now, we show that Algorithm 2 gives the optimal solution. 

In the transformed dynamic network ��ZZZ we compute the lex-

max number of evacuees reached to each of the prioritized 

pickup locations � as the lex-max dynamic flow as in [18]. 

Moreover, the obtained solution is equivalent to the solution 

of the quickest arrival of evacuees at � in �� with the partial 

arc reversal up to the necessary capacity as in Step 3, [17]. 

Capacities of the arcs not used by the flow after partial arc 

reversals are computed in Step 4. □ 

Theorem 4. For the quickest partial arc reversal 

transshipment in �� , the quickest evacuee arrival problem 

can be computed in polynomial-time complexity via j 

minimum cost flow (MCF) computations in 

k�j�lmn��o, p��  time, where 

lmn�o, p� = k�o ste p �o + p log p��. 

Proof. Steps 1, 3, and 4 related to the arc reversal 

capability as in Algorithm 2 are solved in linear time. So their 

time complexity is dominated by the time complexity of the 

computation of the quickest evacuee arrival in ��  and is 

solved in polynomial-time in O�k�MCF��m, n�  where 

lmn�o, p� = kqo log p �o + p log p�r as in Theorem 2. □ 

Example 1. Consider the primary sub-network for evacuee 

arrival as in Figure 2(i). Consider the evacuees at �� and �� 

be 16 and 13, respectively. Let the potential demands of � be 

����� = 20 and ����� = 9. Consider �∗ be the super source 

connected to ��  and ��  in ��  having infinite-capacity and 

zero-transit time, then the highest priority is to be assigned 

for ��  as specified. Then the respective arrivals of the 

evacuees at �� and �� can be determined as in Table 1 (using 

Algorithm 1) and Table 2 (using Algorithm 2) with their 

respective paths assignment without and with arc reversal 

capability in ��, respectively. 

Table 1. The arrival of evacuees at Y without partial arc reversal capability. 

Released time Reached time Paths assignment Flow at �� Flow at �� Total flow 

0 7 �� → �� → �� → �� → ��  2  2 

1 8 �� → �� → �� → �� → ��  2  4 

2 9 �� → �� → �� → �� → ��  2  6 

3 10 �� → �� → �� → �� → ��  2  8 

0 10 �� → �� → �� → ��  1  9 

4 11 �� → �� → �� → �� → ��  2  11 

1 11 �� → �� → �� → ��  1  12 

5 12 �� → �� → �� → �� → ��  2  14 

2 12 �� → �� → �� → ��  1  15 

0 12 �� → �� → �� → ��  - 3 18 

6 13 �� → �� → �� → �� → ��  2  20 

3 13 �� → �� → �� → ��  1  21 

0 13 �� → �� → �� → �� → ��  2  23 

1 13 �� → �� → �� → ��  - 3 26 

2 14 �� → �� → �� → ��  - 3 29 

Total   20 9 29 

Table 2. The arrival of evacuees at Y with partial arc reversal capability. 

Released time Reached time Paths assignment Flow at �� Flow at �� Total flow 

0 7 �� → �� → �� → �� → ��  4  4 

1 8 �� → �� → �� → �� → ��  4  8 

2 9 �� → �� → �� → �� → ��  4  12 

3 10 �� → �� → �� → �� → ��  4  16 

0 10 �� → �� → �� → ��  4  20 

0 12 �� → �� → �� → ��  - 6 26 

1 13 �� → �� → �� → ��  - 3 29 

Total   20 9 29 
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4. Assignment of Vehicles 

In this section, we investigate the BEPP to propose an 

integrated evacuation planning approach for such a problem. 

4.1. Bus-based Evacuation Planning Problem 

Problem 2. Let i ∈ Y, j ∈ Z  with τ��  as the source-sink 

travel times. Let τ�� , l�  and μ�  be the depot-source travel 

times, number of evacuees and sink capacities, respectively. 

Then the BEPP is to find a tour plan to minimize the 

maximum travel times overall buses such that all the 

evacuees be transported to the sink. 

Let the number of evacuees at every source be known. 

Assume �  be the uniform bus capacity, as a unit. The 

movement between the pickup locations � is ignored and the 

same situation in between the sinks ". The set of tours of the 

buses cannot be changed anymore after they start to move. 

Let ∑ s��∈�  and ∑ �--∈�  be the total number of evacuees and 

the total sink capacity, respectively. The maximum number of 

rounds � for the evacuation process is given by ∑ s ��∈� . The 

nonnegative travel cost of ��-  on each edge & = �D, P� ∈   are 

taken symmetric and satisfies the triangle inequality. The 

variables �OM
��  and ��
��

��  give the travel time for the bus % 

within the round � from source to sink, and from the sink to 

the next source, respectively. Let Τ�
   be the duration of 

evacuation overall buses. The problem can be formulated to 

minimize 1¡¢£  such that, 

1�
  ≥ ∑ ∑ �,�  ¤�-
�� + ∑ �OM

��
�∈¥ +  ∑ ��
�� 

��
�∈¥ , ∀ % ∈  $,�∈� �∈�                                                (5) 

�OM
�� =  ∑ ∑ ��-  ¤�-

�� , ∀ % ∈  $, � ∈ �,�∈� �∈�                                                                  (6) 

��
��
�� ≥ ∑��-¦ ∑ ¤�-

�� + ∑ ¤�§
�,�+� − 1§∈� �∈� ¨, ∀ % ∈ $, � ∈ � − 1,                                             (7) 

∑ ∑  ¤�-
�� ≥  ∑ ∑  ¤�-

�,�+�, ∀ % ∈  $, � ∈ �,�∈� �∈�  �∈� �∈�                                                         (8) 

∑ ∑  ¤�-
�� ≤ 1, ∀ % ∈ $, � ∈ � − 1,�∈� �∈�                                                              (9) 

∑ ∑  ∑ ¤�-
��

�∈¥ ≥  s� , ∀ D ∈ �,�∈� �∈�                                                                (10) 

∑ ∑  ∑ ¤�-
��

�∈¥ ≤  �-, ∀ P ∈ ",�∈©�∈�                                                               (11) 

¤�- 
�� ∈ {0,1}, ∀ �OM

�� , ��
�� 
�� , Τ�
   ∈  ℝ.                                                             (12) 

Constraint (5) needs Τ�
  to be greater than or equal to the 

maximal travel cost subject to all bus movements and is to be 

minimized on 1¡¢£ . Constraints (6) and (7) are the measure 

of travel time for the bus % within the round � from source to 

sink, and from that sink to the next source, respectively. 

Constraint (8) tells that the tours are connected and can stop 

whenever they like. Constraint (9) allows a bus from a source 

to a sink per round. Also (10) and (11) represent the bus and 

shelter capacity constraints, respectively. Constraint (12) 

represents whether the bus % travels from source D to sink P in 

the round �. 

For i ∈ Y, j ∈ Z. Let �,� , ��- ,  s� and �- as in Problem 2. For 

j ∈  ℝ, is there a tour plan with Τ�
  < j, for the complete 

evacuation? Regarding the complexity for such a decision 

version, the following result is established. [22] 

Theorem 5. The decision version of BEPP is NP-complete, 

even if �,� = 0 and ��- = ��\-  ∀ D, D′ ∈ � and P ∈ ". 

For a solution, the branch and bound algorithms with four 

upper bounds and three lower bounds for time, three 

branching rules to minimize the number of branches and two 

tree reduction strategies to avoid the equivalent branches 

have been presented in [8]. Upper bounds have been 

constructed in polynomial-time complexity by four heuristic 

algorithms. Among the lower bounds, the first one is based 

on the estimation of the travel times from sources to sinks 

and from sinks to sources, respectively. The second lower 

bound is based on the fact that lower bound for the maximum 

travel time is the average travel time. The third one is about 

the simplification of model formulation. 

4.2. An Integrated Evacuation Planning Approach 

Transit-buses having uniform capacity �  are assigned 

from � which are sufficiently nearer to � in �� on the first-

come-first-serve basis. Such assignment begins only after 

�� ≥  Q for ��  be the number of evacuees arrived at the 

highest pickup demand. For the subsequent assignments, 

the effective waiting instance «  is almost negligible. 

However, waiting at pickup locations is comparatively 

better than to wait at the disaster zone itself. Buses are 

assumed to pick up their full capacities. For this, the 

potential demands of the pickup locations are adjusted to 

be the integral multiple of busloads. Let the potential 

demand of the pickup location �� ∈  � be  ����). Then the 

demands can be adjusted to be �]����  by using the 

following demand adjustment, 

�]���¬�� = ⌊{ ����¬�� + ����¬�� −  �]���¬�� + ⋯ + ����� − �]����} /�°. �                             (13) 

But if the jO² pickup location is the last one with the least priority, then it is taken as, 

�]���� = ����� + ����¬�� −  �]���¬�� + ⋯ + ����� − �]����                                     (14) 
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With the constraints (5-12), the integrated evacuation 

planning problem can be reformulated to minimize 1¡¢£  such 

that: 

1�
  G « [ ∑ �OM 
�� [ �*¥ ∑ ��
��

��  �*¥  C % * $,    (15) 

As such an integrated problem is not easier than the BEPP 

in Section 4.1, we state the following result. 

Theorem 6. The decision version of the integrated 

evacuation planning problem is NP-complete. 

Example 2. By using Equation (13), the arrivals of 

evacuees at � of �� in Figure 2(i) is shown as in Table 1 and 

Table 2 can be adjusted to be the integral multiple of 

busloads as in Table 3 and Table 4, with their respective 

paths assignment without and with arc reversal capability in 

�� , respectively. Such evacuees are to be assigned on the 

integrated evacuation network (cf. Example 3) where the 

transit-buses are assumed to pick up their full capacities 

except for the last trip. For the last trip, it is assumed to be 

the integral multiple of busloads for the remaining evacuees 

(if any) for the complete evacuation by convention. 

 

Figure 2. (i) Primary sub-network with ��
 , �
), (ii) auxiliary network to (i), and (iii) network showing the arc capacities, flows and the saved arc capacities 

due to partial arc reversal concerning to adjusted demands. 
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Table 3. The arrival of evacuees at Y after demand adjustment without partial arc reversal capability. 

Released time Reached time Paths assignment Flow at �� Flow at �� Total flow 

0 7 �� → �� → �� → �� → ��  2  2 

1 8 �� → �� → �� → �� → ��  2  4 

2 9 �� → �� → �� → �� → ��  2  6 

3 10 �� → �� → �� → �� → ��  2  8 

0 10 �� → �� → �� → ��  1  9 

4 11 �� → �� → �� → �� → ��  2  11 

1 11 �� → �� → �� → ��  1  12 

5 12 �� → �� → �� → �� → ��  2  14 

2 12 �� → �� → �� → ��  1  15 

0 12 �� → �� → �� → ��  - 3 18 

6 13 �� → �� → �� → �� → ��  2  20 

2 13 �� → �� → �� → ��  1  21 

1 13 �� → �� → �� → ��  - 3 24 

2 14 �� → �� → �� → ��  - 3 27 

3 15 �� → �� → �� → ��  - 2 29 

Total   18 11 29 

Table 4. The arrival of evacuees at Y after demand adjustment with partial arc reversal capability. 

Released time Reached time Paths assignment Flow at �� Flow at �� Total flow 

0 7 �� → �� → �� → �� → ��  4  4 

1 8 �� → �� → �� → �� → ��  4  8 

2 9 �� → �� → �� → �� → ��  4  12 

3 10 �� → �� → �� → �� → ��  4  16 

0 10 �� → �� → �� → ��  2  18 

0 12 �� → �� → �� → ��  - 6 24 

1 13 �� → �� → �� → ��  - 5 29 

Total   18 11 29 

 
The partial arc reversal strategy allows the reversal of only 

the necessary part of the road segments along with the 

direction of traffic in the evacuation network, saving the 

remaining part of the road segments. Due to such phenomena, 

in some arcs, certain parts are partially reversed as necessary 

and some remain saving. The dotted arcs represent the arc 

saving along with their measure as in Figure 2(iii). Here, the 

road segments �y�, v��, �v�, v��, ���, ���, ���, ���, and ���, ��� 

are saving the arc capacities of 1, 2, 1, 1, and 1 respectively. 

But no such arc saving on �v�, v��, �y�, v��, ���, ���  and 

���, ��� due to their full reversal, as demanded. Saved arc 

capacities are beneficial for the humanitarian logistics, 

facility locations, and also for the emergency vehicle 

movements within the network during such evacuation. 

5. An Integrated Solution Approach 

In an integrated solution approach for the evacuation 

planning problem, the quickest transshipment of the evacuees 

arrived at Y  in N�  as in the form concerning the adjusted 

demands are assigned to the transit-buses in the embedded 

network. 

Algorithm 3. Evacuation planning algorithm in an 

integrated network topology. 

Input: An embedding � = ��, 
, �, �
, �
 , �, �, �! , �! , "� , 

provided with given supply and demand. 

1. Consider �� = ��, 
, �, �
, �
 , ��  having their pickup 

locations be ∪ �� = �. 
2. Construct a priority ordering of � assigning the highest 

priority to the nearest from �. 

3. Determine the arrival of evacuees at �  of ��  from � 

using Algorithm 2. 

4. Assign the transit-buses from �  to �  in �� =

��, �, �! , �! , "� for the supplies obtained in Step 3, to the 

nearest sink ", on the first-come-first-serve basis. 

5. Begin the assignment with �� ≥ �  for ��  be the 

collection of evacuees at �� ∈ � and � be the homogeneous 

capacity of each transit-buses and is continued for the 

adjusted demands at � provided by Equation (13). 

6. Stop, if all the supplies at each � be fulfilled, respecting 

the capacity constraints of ". 

7. Otherwise, return to Step 4. 

Output: Transshipment of evacuees finally to " in minimum 

clearance time. 

Theorem 7. Algorithm 3 constructed for the evacuation 

planning problem in an integrated network gives the feasible 

solution to send the evacuees to "  in minimum clearance 

time. 

Proof. In Step 1, ��  is constructed with the pickup 

locations be ∪ �� = �, and is feasible. In this prioritized sub-

network by construction, Step 2 is also feasible. The arrival 

of evacuees determined at � provided by Algorithm 2 gives 

the feasibility as well as the validity of Step 3 of Algorithm 3. 

Two more Steps 4 and 5 are about the transit-buses 

assignment in the integrated network and are governed not 

only by the availability of the buses at �  but also by the 

supply available at �. It is continued in � for the available 

evacuees respecting the capacity constraints of "  and are 

feasible. Hence, the algorithm is feasible. 

Now, we show that Algorithm 3 gives the feasible solution 

in minimum time. The arrival of the lex-max number of 

evacuees at � from � by using Algorithm 2 gives the quickest 

transshipment of evacuees in the given priority by [18] and 

saves the unused capacity by Theorem 3. These resulting 

flows at �  are taken as the input in ��  for the required 

transit-buses assignment. Such assignment to nearest sink 
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approach respecting the priority is with almost negligible 

waiting delay for these evacuees at � in the embedding. It is 

continued till the last evacuees are reached to the sink 

without violating their capacities. Hence, it gives a feasible 

solution with minimum clearance time. □ 

Example 3. Let the adjusted demands as in Table 3 and 

Table 4 be the available supplies for the bus assignment in 

the embedding as shown in Figure 3. Consider the available 

transit-buses be |$| = 2 as $� and $�  and are with uniform 

capacity of 6. The assignment concerning without and with 

path reversal capability in �� are illustrated briefly in Table 

5 and Table 6, respectively. Here, the column H  represents 

different time instances in the integrated network, $� and $� 

as the assignment of transit-buses with their respective 

positions in �� . Here, l��  and l��  are used to denote the 

mid-way of the road segments connecting �� to #� and �� to 

#�  respectively. The columns for �� , ��
]  and #�  are denoting 

the total flow arrived at � , released from � , and reached 

to ", respectively. 

The quickest transshipment at � and their assignment to " 

be beneficial in the network having arc reversal capability 

than to the network without arc reversal capability, i.e., the 

sooner the better. It is 14, if the partial arc reversal is 

allowed otherwise 17, as illustrated with respect to H. Here, 

the buses $�  and $�  have the route plan of � � �� � #� �

�� � #� � �� � #� � �� � #� , and � � �� � #� , 

respectively concerning without arc reversal at ��. But, with 

respect to arc reversal at ��, the route plan of the buses are 

� � �� � #� � �� � #� � �� � #�  and � � �� � #� �

�� � #�, respectively. 

 

Figure 3. An embedding � � �� �  �� showing an instance of integrated evacuation scenario. 

Table 5. Integrated evacuation planning approach in N for the demand 

adjusted evacuees. 

¶  ·�  ·�  ��  ��
]   ��  ��

]   ¸�  ¸�  

9 ��   6 6     

10 #�   9    6  

11 ��   12 12     

12 #�   15  3  12  

13 l��  ��  18 18 6    

14 ��  M��    9 6   

15 #�  #�    11   12 

16 ��      11   

17 #�        17 

Table 6. Integrated evacuation planning approach in N for the demand 

adjusted evacuees with partial arc reversal. 

¶  ·�  ·�  ��  ��
]   ��  ��

]   ¸�  ¸�  

8 ��   8 6     

9 #�  ��  12 12   6  

10 ��  #�  18 18   12  

11 M��  l��    6 6   

12 #�  ��    11 11  6 

13 ��  #�       12 

14 #�        17 

6. Conclusions 

The quickest transshipment problem is to find the 

minimum clearance time to send a given amount of flow 

from multiple sources to multiple sinks network. For a lex-

max dynamic flow problem, we are given a time horizon 

and a dynamic network with an ordered set of terminals, 

where we need a feasible dynamic flow that 

lexicographically maximizes the flow amount leaving each 

terminal in the given priority. The quickest transshipment 

problem in a dynamic network can be reduced to an 

equivalent lex-max flow problem and is solved in 

polynomial-time complexity. 

Evacuees are collected at the prioritized pickup locations 

of the primary sub-network following the quickest 

transshipment in the lex-max flow approach and are assigned 

simultaneously to the homogeneous transit-buses in the 

secondary sub-network on the first-come-first-serve basis. 

The waiting delay at the pickup locations is almost 

negligible. On the other side, if there is some waiting, it is 

preferable to wait at such pickup locations rather than to be at 

the danger regions. The arc reversal capability of the primary 
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sub-network is beneficial to improve the minimum clearance 

time of the evacuees in the integrated evacuation network 

where the saved unused arc capacities are useful for 

emergency facility locations and logistics. It is interesting to 

extend these techniques for the heterogeneous or mixed 

model transit-buses and also for the disparate group of 

evacuees in a different network topology. 
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